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LETTER TO THE EDITOR 

A self-avoiding walk exponent bound on the thermal Ising 
exponent on some hierarchical lattices 

J R Melrose 
Department of Chemistry, Royal Holloway College, Egham Hill, Egham, Surrey, U K  

Received 17 September 1984 

Abstract. Calculation of critical exponents on a simple class of hierarchical lattice reveals 
that A , P A , ,  where A s  is the self-avoiding walk fixed point eigenvalue and A, the Ising 
thermal eigenvalue. High-dimensional limits of some families of hierarchies obey A, + A, 
as D + CO; this convergence replaces the Euclidian concept of upper critical dimension on 
these lattices. However, families of hierarchies for which D + CO but with constant con- 
nectivity do not show this convergence. 

The existence of hierarchical lattices (Berker and Ostlund 1979, Kaufman and Griffiths 
1981, 1982) with exactly known critical exponents prompts the search for relationships 
between exponents of different but related models. Some time ago Domb (1970, 1972) 
examined connections between series expansions of Ising and SAW models on regular 
lattices; SAW graphs are a subset of Ising graphs. Mackenzie (1976) considers the 
same, In field theoretic formalism both models are members of the n-vector class, de 
Gennes (1972) and Ma (1976). 

The author has previously reported Ising model exponents on hierarchies (Melrose 
1983a, b). Here SAW exponents are calculated and comparisons made. 

There are many, as yet unclassified, varieties of hierarchical lattices (Kaufman and 
Griffiths 1981, 1982, McKay et a1 1982, Melrose 1983c, McKay and Berker 1984). 
Perhaps the simplest class, those studied below, are bond hierarchies: choose any linear 
graph, the basic cell, on which two sites, the nodes, define a bond decoration; the 
lattice is generated by an iterative decoration as illustrated in Kaufman and Griffiths 
(1981, 1982) and Melrose (1983a, b, c). Further conditions placed on the examples 
studied here are that the hierarchy be fully iterated in that every bond is decorated at 
each stage and that it be symmetric in that the nodes are equivalent on the basic cell. 
Some basic cells are shown in figure 1. Melrose (1983b) defines the intrinsic dimension, 
0, by D = log(g)/log(b) and the connectivity, Q, by Q = log(q)/log(b), where g is the 
number of bonds on the basic cell, q is the minimum number of bonds which if cut 
on the basic cell separate the nodes and b is the number of bonds on the shortest path 
between the nodes. 

Dhar (1978) studied SAWS on his early examples of hierarchical lattices. Shapiro 
( 1978) introduced SAW renormalisation on Euclidian lattices. Recently several authors 
(Rammal et a1 1984, Ben-Avraham and Havlin 1984, Klien and Seitz 1984) have studied 
SAWS on the Sierpinski gasket. 

The self-avoiding constraint and ensemble weighting can be applied to walks in 
diverse ways (Amit et a1 1983). Here the traditional definition of a SAW is studied: 
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Figure 1. Some basic cells. 

each walk graph does not self intersect and ensembles of walks are considered with 
each graph being given a weight S N ,  where N is the number of steps on the walk. It 
is perhaps not appropriate to consider some actual discrete time walk rather than just 
an ensemble of walk graphs as stated. 

Renormalisation of the SAW model is carried out graphically: the step weight S is 
renormalised 

S‘ = Gc( S) = cNSN (1 )  
N 

where G c ( S )  is the generating function for the numbers of SAWS of N steps, cN, which 
cross from one node to the other on the basic cell; by construction renormalisation 
factors on each basic cell of the hierarchy. The mth iterate of ( l ) ,  Sh, is the generating 
function for walks crossing an mth unit, where an mth unit is the finite hierarchy 
formed at the mth decoration. For the basic cell ( l a )  of figure 1, the Migdal-Kadanoff 
hierarchies, one finds 

S f =  M S A  (2) 

S’=2S3+4S4+2S5.  (3) 

and on the cell (2b) 

Table 1 gives recursion relations for all cells of figure 1 and families of figure 2. One 
may easily enumerate the crossing walks by hand. 

The recursion relations ( 1 )  are polynomial with S‘(S = 0) = 0 and a single unstable 
fixed point S’ = S = S* such that as m + CD and for S < S*, S; + 0 and A, + 0, whilst 
for S >  S*, SL+co and A,+cD, where A, =dSL/dS’,-,. The ensemble expectation 
at weight S of the number of steps on walks crossing the basic cell, (nJ , ,  obeys 
(n,),EA,(S), and to cross an mth unit 

( n c ) m a A m A m - l . .  . AI(S). (4) 
For S<S*,  (nc),+0 as m + m ;  whilst for S>S*,  (nc),+co. At J=S*, (n , ) ,aA,” ,  
where A,  is the fixed point eigenvalue dS’/dSls* (note this gives explicit physical 
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Table 1. SAW recursion relations for the examples in the text, 

For the cells of figure 1 

S' = c,sn, 

with c,: 

n 
cell 1 2 3 4 5 6 7 8 9 

2a 0 2 2 0 0 0 0 0 0 
2b 0 0 2 2 2 0 0 0 0 
2c 0 0 0 6 0 4 0 2 0 
2d 0 I 6 8 4 2 0 0 0 
2e 0 0 0 6 22 28 20 6 0 
3a 0 3 6 6 0 0 0 0 0 
3b 0 4 8 8 8 0 0 0 0 
3c 0 0 6 0 6 0 6 0 0 
3d 0 0 3 12 24 24 18 0 0 
3e 0 0 4 16 32 48 48 48 32 
4a 0 4 12 24 24 0 0 0 0 
4b 0 8 24 48 96 144 240 192 144 
and zero for n > 9. 

For the families of figure 2 

Fc: S ' = ( 2 s + 4 S 2 + 2 S 3 )  1 SI+' . )* 

I F b )  0 4 . . 
n = 2  , 3 , 4 . . .  

n=O , 1 2 

Figure 2. Some families of basic cells. 
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interpretation of the fixed point eigenvalue and expresses the self similarity of the 
‘critical’ SAW walks). (The physical interpretation of model eigenvalues on hierarchies 
is a useful bonus; for the Ising model, the renormalised coupling gives interface free 
energies on units and the internal energy of the interface is proportional to the thermal 
eigenvalue.) As mth units are of linear scale b”’ one may define an intrinsic fractal 
dimension for the SAWS: D = Y, = log( A,)/log( b )  (intrinsic because distance is defined 
by the intrinsic lattice metric (Melrose 1983b)). Following Shapiro (1978) one may 
show that the ensemble correlation length ‘if( s) diverges as S + S! with ( S )  - ( S  - S ) - ’ s ,  
where v, = l /D, ;  note that the relation v, = 1/D, proposed on regular lattices by Havlin 
and Ben-Avraham (1982) is found exact on the hierarchies. 

Melrose (1984) discusses renormalisation of random walks on hierarchies and gives 
similar interpretations of the rational recursion relations found in this case (note the 
random walk recursion relations are normalised in that they are generating functions 
for probabilities of crossing units whilst the SAW relations ( 1 )  are not). 

Attention now turns to numerical results. For the hierarchies of figure 1, table 2 
compares values of S* and A, with those of the Ising fixed point J* and thermal 
eigenvalue A ,  found by Melrose (1983b). One observes in all cases the bound A , >  A,  
as stated in the abstract. Although the author has been unable to prove this bound 
explicitly it is straightforward to show that tanh(J*) > S*. 

Table 2. Ising and SAW fixed points and eigenvalues 

2c 2b 2e 3c 2a 3d 

J* 0.711 I 0.6673 0.5241 0.4326 0.4407 0.378 1 
A ,  2.3352 2.0737 2.4293 2.6096 1.8284 2.8164 
S* 0.5175 0.4783 0.373 1 0.3784 0.3660 0.2823 
A,  4.3765 3.6471 5.0167 3.3166 2.2679 4.0361 

3e 3a 3b 2d 4a 4b 

/*  0.3184 0.2351 0.1832 0.3269 0.1606 0.0941 
A, 3.1917 2.1577 2.2 173 2.4038 2.3312 2.2764 
S* 0.2822 0.2178 0.1750 0.2628 0.1538 0.093 I 
A ,  4.1631 2.4086 2.3561 2.9617 2.4989 2.3 120 

The Ising recursion relations are developed in t = tanh(J) via the expectation (a ,  a2)c 
of the two nodes on the basic cell in a high temperature expansion: 

t’= tanh(J’) = ((+,(T~)~, ( 5 )  
where ( )c  denotes an expectation over the basic cell partition function; note that 
( ( + , C T ~ ) ~  is not the expectation (alu2) on the full lattice. (One can view the renormalisa- 
tion as a many-one mapping between high temperature graphs in tanh(J) on the 
original and renormalised lattice; the SAW renormalisation may be viewed similarly.) 
The recursion relation in t’ explicitly involves that of the SAWS (1 ) :  

where g , (  t )  is a sum over crossing SAW graphs as in ( l ) ,  Gc(S)  = g , ( S ) ,  gz( t )  is a sum 
over SAW graphs with connected and disconnected closed loops and Z( t )  is the partition 
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function of the basic cell, a sum over all connected and disconnected loops. (A loop 
is a graph with an even number of edges at each site and multiple edges are not allowed 
in the above graphs.) The bound t* > S* follows directly from the bound S'> t ' .  Now 
S'>  t' if 

g , (x) (Z(x)  - 1)  > g2(x). (7) 

On the left of ( 7 )  one has a direct product of SAW graphs and closed loops which 
includes graphs with multiple bonds. On the right of (7 )  one again has SAWS with 
loops, with the exclusion however of multiple bonds, hence clearly term by term the 
bound is proven. (Note a factor coshg(J) divides out of (6) as is usual in tanh(J) 
expansions.) 

The bound tanh(J*) > S* was proved on the square lattice by Fisher and Sykes 
(1959) and the above extends this to the bond hierarchies. Domb (1970, 1972) was 
similarly unable to prove the exponent bound although it is obeyed by the known 
regular lattice results and the E expansion (Ma 1976). 

Families of hierarchies which for large cell limits have D + 00 are easily constructed, 
Melrose (1983b). Figure 2 shows three such families; family Fa has D/ Q+ 1 as D+ a, 
Fb has D/  Q + 2 as D + CO and Fc has Q = constant and hence D/ Q + 00 as D + CO. A 
general way of forming a family is to take any basic cell and to consider a multiplicity, 
M, of this cell connected at the nodes; this is illustrated by the Migdal-Kadanoff 
hierarchies ( 1 a).  

and A, = A giving 
with b = A, v, = 1 VA, M ;  this exponent is that of the I D  lattice and the linear nature 
of the M K H  has been stressed by Melrose (1984). As is well known (Migdal 1975, 
Melrose 1983a) the Ising model on the M K H  obeys A, < A and A t +  A as M, D+ 00. 

Figure 3 shows the eigenvalue variation with M of families formed from multiples of 
cells (2a) and (3a), again A , >  A, and A t +  A,+  b as M, D+ CO. The Ising and SAW fixed 
points converge and tend to zero as M +  CO. (Note the peak in the Ising eigenvalue 
of 2a hints at the complexity of the graph statistics underlying A , ;  that is whilst at high 
D, SAW statistics are most important, at lower D other, as yet unknown, statistics are 
significant. A number of cells, 3a, 3d, 3e, 2a, 2b, 2d, 2e, show similar peaks.) 

The limiting behaviour A,  + b, of the SAW recursion relation as M + 00 is shown to 
be that of the recursion relation of the shortest crossing paths of the form (2).  Let 

From the M K H  recursion relation, (2), one finds S* = 

7-- ' '\, A 

,- ti , 

3 01 '\ 

4 2 2  
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/' 
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Figure 3. Eigenvalues for multiplicities of cells 3c 
and 2a. 

Figure 4. Eigenvalues for the family Fa of figure 2 
where n is defined in figure 2. 
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there be p shortest paths of length b between the nodes of the cell multiply combined, 
then for M cells 
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- - 

1 1 . , 1 , , , , 1  , , , 1 / .  

note that M enters both SAW and Ising recursion relations as a multiplicative constant. 
Now substitute in (8) the fixed point Sg* = (MP)"('-~) of the shortest paths recursion 
relations S' = MpSb, giving 

(9) 

Clearly as M + CO and for b > 1 all terms in the sum tend to zero and S ' ( S $ )  + S,*; 
similarly for the eigenvalue A s +  b. 

Figures 4 and 5 show eigenvalue variations for the families Fa and Fb respectively. 
With Fa, A t +  A, -f b = 2 whilst on Fb, A t +  A, + 3 as D + 00. Clearly Fa tends to the 
shortest paths result as discussed for multiplicity. The limit of Fb however shows that 
the Ising results converge to the SAW results in general. In both families fixed points 
converge and tend to zero as D + Co. However the results for family Fc shown in figure 
6 suggest that the divergence of the connectivity with D is a necessary condition for 
the Ising and SAW models to converge; the behaviour of this family is quite intuitive 
given the form of the basic cells. 

s'(s$) = s$+C ( C i p ( b + i ) / ( l - b )  I + ( b + i ) / ( l - b )  ) M  
I 

1 0  5 0  10 0 

Figure 5. Eigenvalues for the family Fb. 
logzinl  

n n 
Figure 6. Eigenvalues and fixed points for the family Fc. A,  -* 4.635, A t  -* 2.72 16, S* + 0.3446, 
J* -* 0.4365. 
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Melrose (1984) calculates the spectral dimension, F (Dhar 1977, Rammal and 
Toulouse 1983), of the above hierarchies. Whilst on fractals it has been proposed 
(Rammal and Toulouse 1983) that F = 4 indicates a crossover of SAW statistics to those 
of random walks no such behaviour is found for SAWS on the hierarchies here: for 
example on the M K H  F = D, yet v, = 1 V D .  

The 0-03 convergence shown above replaces the concept of upper critical 
dimension known on regular lattices. Furthermore the convergence of the Ising model 
to the SAW model is seen to be more fundamental, in the sense that it extends to the 
hierarchies, than a coincident convergence of Ising and SAW models to the Gaussian 
model at d = 4 in Euclidian space. Figures 3-5 clearly show that the Ising eigenvalue 
is influenced by the SAW eigenvalue prior to any convergence of A,, rather than both 
models tending independently to a common limit. 

In addition to relationships between vrs and vSAW, as considered above, Domb 
(1970, 1972) also sought relationships between both the SAW exponent y and the Ising 
susceptibility exponent, and the analogous closed polygon exponent and the Ising 
specific heat exponent. The evaluation of these SAW exponents and possible relation- 
ships remains for future investigation. 
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